Thursday, February 28, 2013

Resurrection of 3-billion-year-old antibiotic-resistance proteins

Resurrection of 3-billion-year-old antibiotic-resistance proteins [ Back to EurekAlert! ] Public release date: 27-Feb-2013
[ | E-mail | Share Share ]

Contact: Michael Bernstein
m_bernstein@acs.org
202-872-6042
American Chemical Society

Scientists are reporting "laboratory resurrections" of several 2-3-billion-year-old proteins that are ancient ancestors of the enzymes that enable today's antibiotic-resistant bacteria to shrug off huge doses of penicillins, cephalosporins and other modern drugs. The achievement, reported in the Journal of the American Chemical Society, opens the door to a scientific "replay" of the evolution of antibiotic resistance with an eye to finding new ways to cope with the problem.

Jose M. Sanchez-Ruiz, Eric A. Gaucher, Valeria A. Risso and colleagues explain that antibiotic resistance existed long before Alexander Fleming discovered the first antibiotic in 1928. Genes that contain instructions for making the proteins responsible for antibiotic resistance have been found in 30,000-year-old permafrost sediment and other ancient sites. Their research focused on the so-called beta-lactamases, enzymes responsible for resistance to the family of antibiotics that includes penicillin, which scientists believe originated billions of years ago.

They describe using laboratory and statistical techniques to reconstruct the sequences of beta-lactamase proteins dating to Precambrian times, 2-3 billion years ago. The team also synthesized the inferred ancestral enzymes and conducted studies on their stability, structure and function. "The availability of laboratory resurrections of Precambrian beta-lactamases opens up new possibilities in the study of the emergence of antibiotic resistance," the report states. "For instance, it should now be possible to perform laboratory replays of the molecular tape of lactamase evolution and use such replays to probe the molecular determinants of the efficiency of lactamases to adapt to different types of antibiotics." The authors also note that the extreme stability and catalytic features displayed by the 2-3-billion-year-old lactamases suggest that resurrected Precambrian proteins have utility for the biotechnology industry.

###

The authors and co-authors acknowledge financial support from the Spanish Ministry of Science and Innovation, NASA Astrobiology Institute, FEDER Funds and the Georgia Institute of Technology.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter Facebook


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Resurrection of 3-billion-year-old antibiotic-resistance proteins [ Back to EurekAlert! ] Public release date: 27-Feb-2013
[ | E-mail | Share Share ]

Contact: Michael Bernstein
m_bernstein@acs.org
202-872-6042
American Chemical Society

Scientists are reporting "laboratory resurrections" of several 2-3-billion-year-old proteins that are ancient ancestors of the enzymes that enable today's antibiotic-resistant bacteria to shrug off huge doses of penicillins, cephalosporins and other modern drugs. The achievement, reported in the Journal of the American Chemical Society, opens the door to a scientific "replay" of the evolution of antibiotic resistance with an eye to finding new ways to cope with the problem.

Jose M. Sanchez-Ruiz, Eric A. Gaucher, Valeria A. Risso and colleagues explain that antibiotic resistance existed long before Alexander Fleming discovered the first antibiotic in 1928. Genes that contain instructions for making the proteins responsible for antibiotic resistance have been found in 30,000-year-old permafrost sediment and other ancient sites. Their research focused on the so-called beta-lactamases, enzymes responsible for resistance to the family of antibiotics that includes penicillin, which scientists believe originated billions of years ago.

They describe using laboratory and statistical techniques to reconstruct the sequences of beta-lactamase proteins dating to Precambrian times, 2-3 billion years ago. The team also synthesized the inferred ancestral enzymes and conducted studies on their stability, structure and function. "The availability of laboratory resurrections of Precambrian beta-lactamases opens up new possibilities in the study of the emergence of antibiotic resistance," the report states. "For instance, it should now be possible to perform laboratory replays of the molecular tape of lactamase evolution and use such replays to probe the molecular determinants of the efficiency of lactamases to adapt to different types of antibiotics." The authors also note that the extreme stability and catalytic features displayed by the 2-3-billion-year-old lactamases suggest that resurrected Precambrian proteins have utility for the biotechnology industry.

###

The authors and co-authors acknowledge financial support from the Spanish Ministry of Science and Innovation, NASA Astrobiology Institute, FEDER Funds and the Georgia Institute of Technology.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter Facebook


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Source: http://www.eurekalert.org/pub_releases/2013-02/acs-ro3022713.php

kennedy demi moore roy oswalt kevin martin 2012 senior bowl chuck series finale welcome back kotter

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.